
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2022 1

Probabilistic Brain Extraction in MR Images via
Conditional Generative Adversarial Networks

Saeed Moazami, Deep Ray, Daniel Pelletier, and Assad A. Oberai

Abstract— Brain extraction, or the task of segmenting
the brain in MR images, forms an essential step for many
neuroimaging applications. These include quantifying brain
tissue volumes, monitoring neurological diseases, and es-
timating brain atrophy. Several algorithms have been pro-
posed for brain extraction, including image-to-image deep
learning methods that have demonstrated significant gains
in accuracy. However, none of them account for the in-
herent uncertainty in brain extraction. Motivated by this,
we propose a novel, probabilistic deep learning algorithm
for brain extraction that recasts this task as a Bayesian
inference problem and utilizes a conditional generative
adversarial network (cGAN) to solve it. The input to the
cGAN’s generator is an MR image of the head, and the
output is a collection of likely brain images drawn from a
probability density conditioned on the input. These images
are used to generate a pixel-wise mean image, serving
as the estimate for the extracted brain, and a standard
deviation image, which quantifies the uncertainty in the
prediction. We test our algorithm on head MR images from
five datasets: NFBS, CC359, LPBA, IBSR, and their combi-
nation. Our datasets are heterogeneous regarding multiple
factors, including subjects (with and without symptoms),
magnetic field strengths, and manufacturers. Our experi-
ments demonstrate that the proposed approach is more
accurate and robust than a widely used brain extraction
tool and at least as accurate as the other deep learning
methods. They also highlight the utility of quantifying un-
certainty in downstream applications. Additional informa-
tion and codes for our method are available at: https:
//github.com/bmri/bmri

Index Terms— Bayesian inference, Brain extraction, Con-
ditional generative adversarial networks, Medical imaging,
Neuroimaging, Skull stripping, Uncertainty quantification

I. INTRODUCTION

MRI brain extraction, or skull stripping, is the process of
segmenting brain parts, namely the cerebrum, cerebel-

lum, and brain stem organs, in a whole head MR image. The
output of this task is usually in the form of a 3D image volume
of the brain with the complimentary parts eliminated, or a 3D
binary mask volume, which distinguishes a unified brain from
the background voxels. Brain extraction can be used directly
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by the end-user, as a pre-processing step in software packages
such as FreeSurfer [1], [2] and Fsl [3], or by downstream tools
in medical imaging applications, which include grey and white
matter volume measurement [4], monitoring of neurological
diseases such as multiple sclerosis (MS) [5] and Alzheimer’s
disease [6], brain atrophy estimation [7], [8], and brain lesion
segmentation [9]. In other words, in most neuroimiaging tasks
non-brain parts are eliminated from head MRI images before
being used by the subsequent algorithms. Consequently, even
if the downstream steps in the workflow are accurate, the
final results can be highly erroneous if the brain extraction is
performed poorly. The impact of brain extraction on the final
results of neuroimaging studies and its prevalence highlights
the importance of accuracy and confidence with which this
task is performed.

Given that skull stripping forms the basis of a wide range of
applications, many tools have been developed over the years
to automate and optimize this task (see Section II). However,
there are still several aspects that can be improved. These
include further gains in accuracy, robustness (the ability to
work with heterogeneous and diverse MR images), and speed.
Another aspect that is yet to be explored is the ability to quan-
tify the uncertainty in skull stripping. That is, providing the
end-user with the best estimate of the brain along with mea-
sures of confidence in that estimate. The method proposed in
this manuscript particularly contributes to this aspect of brain
extraction. In Section IV-C, we have extensively discussed the
significance and applications of uncertainty quantification in
brain extraction.

This paper introduces a deep Bayesian inference frame-
work in which the brain extraction task is performed using
a conditional generative adversarial network (cGAN) [10]–
[12] architecture. The cGAN model is trained using a set
of pairwise MR images of the head (denoted by h) and the
corresponding extracted brain (denoted by b) as ground truth.
Then using Bayes’ theorem, the model learns the distribution
of the brain image conditioned on the corresponding image
of the head, that is pB|H(b|h). Thereafter, given any new MR
image of the head, the model is able to efficiently sample from
the conditional distribution, that is, providing multiple likely
brains for the given head image. These samples, in turn, can be
used to calculate important statistics of the distribution, includ-
ing the pixel-wise mean and standard deviation. The former
provides an estimate of the extracted brain image, whereas
the latter quantifies the diversity in the model’s prediction as
uncertainty in the extraction, indicating the model’s confidence
in generating different regions of the extracted brain. This
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information can be used by the end-user in downstream
applications. For example, they may focus on regions with
higher uncertainty for potential quality control or manual
corrections. Also, they can use the cumulative measure of
standard deviation as a surrogate of the estimated error in the
extractions for the entire brain. In Section IV, we demonstrate
that the proposed algorithm compares well with the state-of-
the-art methods for MRI brain extraction in terms of accuracy
and robustness and does so in acceptable computational time
IV-C. We also demonstrate that it quantifies uncertainty in the
brain extraction task and how this estimate may be used to
detect out-of-distribution input images, and to assess the level
of confidence in the output.

The rest of the paper is organized as follows. In Section
II, a brief review of the related work is provided. In Section
III, the proposed method is described in detail. Numerical
results are presented and discussed in Section IV, followed by
the conclusions and directions for future research in Section
V. Additional information, such as implementation details, is
provided in the Appendix.

II. RELATED WORK

In Section II-A, we list a number of deep learning (DL)-
based frameworks that are used in medical imaging. Then,
in Section II-B, we focus on existing generative adversarial
networks (GANs)-based strategies in this field. Finally, in
Section II-C, we focus on DL methods in the context of brain
extraction, briefly highlighting the underlying network archi-
tectures, the advantages of the methods, and their potential
drawbacks.

A. Deep Learning in Medical Imaging
Recently, deep learning-based methods have received sig-

nificant attention in medical imaging, with applications beyond
brain extraction and for modalities not limited to MRI. A broad
spectrum of medical tasks has been accomplished using DL,
many of them with superior performance when compared to
traditional methods [13], [14]. These methods also utilize
various architectures and algorithms to perform medical imag-
ing tasks. The first group of DL-based methods, commonly
referred to as deep convolutional neural network (CNN or
DCNN)-based works, use neural networks as function approx-
imators in a supervised direct inference framework. That is,
the input image passes through several convolutional layers
to provide an output. The aim is to minimize a loss function
calculated based on the difference between the prediction and
the target, thus producing results as close as possible to the
target (ground truth). As it will be discussed in Section III-
H, we compare our method with an implementation based on
DCNN as a benchmark. We also provide additional details for
this method in Appendix C.

In addition to DCNN, numerous other architectures in DL
can be used for medical imaging tasks. Variational autoencoder
(VAE) methods [15] use an encoder network to map the
input image to a low dimensional latent space and a decoder
network to reconstruct the input as closely as possible to the
original image. The latent representation can be used for a

variety of analyses and tasks [16]. For instance, in image
harmonization, the latent representation can be manipulated
to produce a scanner-invariant version of the input image
while preserving the biological characteristics of the image
[17]. Graph convolutional networks (GCN)-based methods aim
to transform medical imaging data into graph representations
to employ inherently efficient graph-driven methods on them
[18], [19], such as graph-based node classification for disease
prediction [20] or tumor segmentation [21]. Additionally, re-
inforcement learning (RL)-based methods are used in medical
imaging where relying directly on evaluation metrics, human
feedback, or generally, the notion of reward is more favorable
than defining a directly optimizable loss function. We direct
interested readers to [22] for a review of deep RL-based
methods in medical imaging. Transformers or self-attention
models [23] are another novel group of DL-based methods
initially introduced for natural language processing (NLP).
Vision transformers (ViT) [24] split images into small patches
and regard them as tokens or words, enabling ViTs to perform
a range of tasks in computer vision and medical imaging
[25]. In TransUNet [26], the authors propose a hybrid model
that benefits from both vision transformer-based architecture
and more traditional CNNs for multi-organ segmentation in
medical imaging. Lastly, diffusion models are a class of DL-
based models that gradually add Gaussian noise to the images
and learn to recover the input image from the noisy one. A
fully trained diffusion model can generate images that belong
to the training data distribution by passing a random noise to it.
Diffusion models were initially introduced for image denoising
[27] but have since shown potential in handling a range of
medical imaging tasks [28], such as brain tumor segmentation
[29] and reconstructing MRI images with enhanced character-
istics [30]. We also use a variant of diffusion models as a
benchmark (see Section III-H and Appendix-C.) and compare
its results against our method in Section IV.

B. Generative Adversarial Networks in Medical Imaging
Among DL-based methods, those based on GANs [31] have

achieved remarkable popularity. While various architectures
and loss terms have been proposed for GANs [32], they
typically comprise two neural networks, namely a generator
and a critic or discriminator, that are trained in an adversarial
fashion with opposing objective functions. This structure en-
ables GANs to solve a wide range of medical imaging tasks,
some of which are described below.

In its basic form, the GAN is trained via an unsupervised
learning approach so that the generator is able to learn the
underlying distribution from which the samples in the (finite)
training set are drawn. Once trained, the generator synthesizes
new samples from the learned distribution. This method is
particularly useful in addressing the well-known challenges of
scarcity and imbalance in medical data [33]. Studies described
in [34] and [35] are examples of GAN-based models that can
generate realistic brain MR images using a small number of
training samples. While these methods are useful, more control
over generating data is needed in most applications. This is
achieved through variants of conditional GANs [10] or image-
to-image translation networks [36]. Within this category are
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algorithms that aim to generate images from one modality
based on samples from another modality (CT to/from MRI
[37], for example), or those that synthesize a missing pulse
sequence in MR imaging [38].

Another common problem in medical imaging that GAN-
based methods have been applied to is domain shift. That is,
the drop in the performance of a given machine learning model
during testing due to the shift between the training and test
data distributions. A number of GAN-based methods aim to
perform domain adaptation to mitigate this problem [39], [40].
Authors in [41] propose an unsupervised domain adaptation
approach by conducting image appearance transformation and
domain-invariant feature learning. This method enables cross-
modality cardiac image segmentation, that is, training a model
on the more abundant MRI data and then applying it to
CT images. Domain adaptation can also be used to address
the scarcity of labeled data in medical imaging. In [42], the
authors develop a reverse domain adaptation scheme with
an adversarial neural network that transforms real medical
data into a synthetic representation, while trying to preserve
important information. The synthetic image distribution is then
used to generate more labeled medical data.

GANs have also been shown to be successful in performing
image segmentation. Some of the most important medical
imaging tasks lie within this category and include organ [43],
lesion [9], and tumor segmentation [44]–[46]. Like any other
task, a variety of GAN-based methods and architectures have
been introduced in this area [47]. The interested reader is
referred to [48]–[51] for surveys on medical imaging using
GAN-based methods and to [52] for GANs in brain MRI.

C. Deep Learning Based Brain Extraction

Manual segmentation of the brain in MR images is a labor-
intensive and time-consuming task. This has led to a variety of
automated methods devoted to solving this problem. In review
papers (see [53] [54], for example), brain extraction tools
are categorized as conventional, machine learning (ML)-based,
and DL-based methods, with subcategories within each class.
Despite the growth of interest in ML/DL methods, some tools
based on conventional methods are still widely used, especially
in medical research and clinical environments. These include
Fsl-BET [55], BEaST [56], and AFNI 3dSkullStrip [57].

Similar to other tasks in the medical imaging area, DL-
based brain extraction methods are typically more robust
when working with images with intensity variation and slight
image misalignment. As a result, they do not usually require
extensive pre-processing and parameter adjustment. Moreover,
since they can utilize GPUs, their speed can be readily scaled.
In the following, we provide a summary of some of these
methods.

Authors in [58] present one of the first DL-based brain
extraction methods. They utilize a CNN to capture 3D features
in head MRI images with a relatively shallower architec-
ture compared to the most recent works. More recently, the
methods that utilize the U-Net architecture [59] have been
successful in performing different image-to-image tasks in
medical applications [60]. Likewise, most DL-based brain

extraction approaches utilize the U-Net architecture. These
methods can be applied to head image volumes (3D), MRI
slices (2D), or three individual slice inputs from axial, sagittal,
and coronal directions jointly (2.5D).

In the auto-context convolutional neural network (Auto-
Net) [61], multiple fully connected and convolutional neural
network layers are combined within a U-net structure. Models
are then trained to perform brain extraction using images
sliced along three main directions. Multiple 2D patch sizes are
used to capture the context of different spatial scales. Image
segmentation metrics such as dice similarity coefficient (see
Section III-F for metrics’ definitions) are then evaluated for
different groups, such as healthy subjects, fetal, and patients
diagnosed with Alzheimer’s disease (AD). In another work
[62], the performance of a U-net based artificial neural network
(HD-BET) is compared against a number of conventional tools
using different types of MR images. The best results (average
dice similarity coefficient) are obtained with 3D T1-weighted
images. The complementary segmentation network (CompNet)
[63] method utilizes two pathways to learn features from both
the brain and complementary tissues, i.e., bones and other
parts of the head. The two trained models then work together
to perform brain extraction. This method aims to enhance
the robustness of the model in the presence of atypical or
pathological brain images as it incorporates information from
outside the brain in the training process. The paper reports
metrics for healthy subjects and for images with synthetic
pathological conditions. Authors in [64] propose multiview
U-net (MVU-Net) architecture, in which three models are
trained to extract the brain using 2D U-nets. The model
requires head MRI images in three directions and fuses the
three results linearly to produce a final brain mask. Also,
the authors compare the evaluation metrics of U-Net-based
architectures with and without skip connections. Moreover,
the work presented in [65] investigate 3D U-net structures
for brain extraction. The effect of a variety of loss functions
is investigated in brain extraction task using a 2D U-Net
architecture in [66].
U-Net-based methods also vary based on the training data

characteristics. In [67], the authors introduce SynthStrip, a
single model trained entirely on synthetic data with a wide
range of modalities, intensity distributions, and artifacts. Fur-
ther, the U-Net-based architectures have also been shown to
be applicable to non-human brain images. In [68], a U-Net
model is pre-trained on human imaging data. Then, a transfer-
learning framework is used to update the model on non-human
primates (NHP) data using fewer available training samples.
Additional works that focus on the brain extraction task in
rodents, such as MRI images of mice and rats, can be found
in [69], [70]. Finally, in [71], the authors evaluate their U-
Net-based method on several image modality combinations as
inputs, for example, T1, T1 Gadolinium contrast-enhanced,
T2, and T2-FLAIR together.

Most brain extraction algorithms in the literature rely on
U-Net-based or similar encoder-decoder architectures, with a
few exceptions, such as graph-based methods used in [72].
Also, they rely on deterministic methods that generate a single
segmented brain image from a given input head image and
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do not provide estimates about the certainty of their output.
In contrast to this, the method developed in this manuscript
performs brain extraction in a probabilistic context. That is,
rather than producing a single image of the brain, it produces
an ensemble of images which can then be used to extract the
most likely extracted brain and to assess the uncertainty in
this prediction. To accomplish this, it relies on the ability of a
cGAN model to learn and efficiently sample from a conditional
distribution [11], [12], [73].

While there is no prior work in quantifying uncertainty in
brain extraction, there has been work on probabilistic image
segmentation [74]. This includes the use of a collection of
models to generate an ensemble of segmented images [75]. It
also includes the combination of a U-Net with a conditional
variational autoencoder [76] to generate multiple segmented
images using a single model. More recently, conditional
diffusion models [77], which are the conditional counterpart
of diffusion models [78], [79], have also been employed
successfully for image segmentation [29], [80], [81]. The
cGAN developed in this study, and the conditional diffusion
models share a common feature in that they both efficiently
generate samples of the segmented image drawn from a com-
plex conditional distribution by transforming a random vector
drawn from a simple probability distribution via deep neural
networks. In the cGAN, this transformation is accomplished
by a single, highly expressive generator network, whereas in
a conditional diffusion model, it is accomplished by multiple
iterates of a relatively less complex U-Net. The fact that a
single forward pass of a diffusion model requires multiple
iterates makes the forward pass of the cGAN less expensive
than that of a conditional diffusion model. On the other hand,
in order to train the generator, the cGAN relies on adversarial
learning, which can be hard to realize and prone to mode
collapse (lack of diversity in outputs), whereas the diffusion
network uses score matching, which is typically more stable
[82]. The application of conditional diffusion models to brain
extraction and their comparison with the cGAN developed in
this work is an interesting avenue for research that can be
explored in the future.

III. MATERIALS AND METHODS

This section is dedicated to describing the brain extraction
task and its formulation as a Bayesian inference problem.
The proposed method and its workflow, the processing steps,
datasets used to train and test the model, and the evalua-
tion metrics are also explained. Additionally, a number of
benchmark DL-based and non-DL-based methods which are
used to assess the performance of the proposed algorithm are
described.

A. Problem formulation

The brain extraction task is defined as a Bayesian inference
problem that is solved using a deep generative adversarial
network. In particular, given paired sample images of the head
and the extracted brain, a conditional GAN (cGAN) [10] is
trained to produce samples from the conditional distribution.

Fig. 1: The conditional generative adversarial network
(cGAN) architecture used in the proposed method. The gener-
ator g receives real head image h and generates a brain bg for
any random latent vector z. The critic d distinguishes between
the generated brain images bg and real ones b paired with h.

The image size of a 3D MR image is denoted by N1 ×
N2 × N3, where N1, N2, and N3 are the number of voxels
in the coronal, sagittal, and axial directions, respectively. An
axial slice of the head, denoted by h ∈ ΩH ⊂ RNH , is a
two-dimensional array of size NH = N1 × N2 pixels. The
pixel values range from zero to one (h ∈ [0, 1]NH ) after
preprocessing discussed in Section III-D. The corresponding
image of the brain is denoted by b ∈ ΩB ⊂ RNB , and is of the
same size as h (NB = NH ). In the brain image, the intensity
of all pixels that are not a part of the brain is set to zero.

We assume that a dataset S = {(h(i), b(i))}Ni=1 containing
N pairwise head and brain MR images from several subjects
is available, and each sample in this dataset is drawn from a
joint density function PBH(b,h), which is unknown. The goal
is to utilize this dataset to develop an algorithm for efficiently
sampling from the conditional distribution PB|H(b|h). That is,
given a new image of the head, we wish to generate sample
images of the brain conditioned on it. These samples can be
used to generate the mean brain image and a standard deviation
image, which allows us to quantify the uncertainty in the
prediction. As described below, this is done via a modified
version of the cGAN model [83] [11].

B. Conditional GAN (cGAN) Model

1) Model formulation: As illustrated in Fig. 1, the cGAN
comprises two deep neural networks, namely, a generator g
and a critic d. The generator, g : ΩH × ΩZ 7−→ ΩB , accepts
as input an image of the head, h, and for any input instance
of the latent vector z ∈ ΩZ ⊂ RNZ generates an output image
of the brain. That is, bg = g(h, z). The latent vector is drawn
from the distribution PZ , which is the standard multivariate
normal distribution. For a given h, by sampling z from PZ ,
the generator generates an ensemble of brain images. These
can be thought to be drawn from a conditional distribution,
bg ∼ P g

B|H . The precise form of this distribution is determined
by the weights of the generator, and the goal of the training
procedure is to make this distribution as close as possible to
the true conditional distribution PB|H .

The critic, defined as d : ΩH×ΩB 7−→ R, is responsible for
distinguishing between image pairs from the true dataset, i.e.,
(h, b) ∼ PBH , and the pairs that their brain image is generated
by the generator network, i.e., (h, bg), where bg ∼ P g

B|H . The
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Fig. 2: Workflow of the proposed brain extraction method after training. It starts from loading the 3D image and feeding it as
pre-processed axial slice images to the fully trained generator g∗. For any given head slice image h, n random samples of the
latent vector z are passed to g∗ to generate n brain samples bg1...n. The samples are used to compute a single axial image of
pixel-wise mean and standard deviation (b̄ and b′, respectively) for any input slice image. These slice images are then stacked
to form 3D mean and standard deviation images (B̄ and B′). B′ is used for uncertainty analysis, discussed in Sction IV-C.
Threshholding and post-processing is performed on B̄ to generate the extracted brain mast M , which is applied to the input
3D image to produce the final extracted brain B̂.

critic is trained to attain larger values for images from the
true dataset and smaller values for images generated by the
generator. This is done via the Wasserstein GAN loss function
[84] as the difference between the values of the critic for true
and generated images:

L(d, g) = E
(h,b)∼PBH

bg∼P g
B|H

[d(h, b)− d(h, bg)], (1)

where E denotes the expectation. Then, the following min-
max problem is solved concurrently to find the optimal critic
and generator:

d∗(g) = argmax
d

[L(d, g) + λGP] , (2)

g∗ = argmin
g

L(d∗(g), g), (3)

where in (2) GP is the gradient penalty term [85] given by:

GP = E
ϵ∼U(0,1)

[(∥∂bd(h, b)∥ − 1)2], (4)

with λ coefficient that is a hyper-parameter (set to be 10 in this
work). GP is used to enforce the critic to be 1-Lipshitz with
respect to b = ϵb + (1 − ϵ)bg being an average of actual
and generated brains weighted using ϵ, a random number
selected from a uniform distribution U(0, 1). The 1-Lipshitz
constraint is required to mathematically assure that finding
the optimal generator g∗ is equivalent to minimizing the
(mean) Wasserstein-1 distance between the learned conditional
distribution P g∗

B|H and the target PB|H (see [11] for more
details) and to numerically introduce additional regularisation
which is useful to stabilize the training.

Convergence in the Wasserstein-1 implies weak conver-
gence [86] of the distributions. Thus, in the converged limit,
for the trained generator (also denoted by g∗), we have:

E
b∼PB|H

[l(b)] = E
b∼Pg∗

B|H

[l(b)] = E
z∼PZ

[l(g∗(z,h))], (5)

where l is any continuous bounded function defined on ΩB .
In other words, for a given image h, computing the expected
value of any function of the brain b over the conditional
distribution is the same as computing the expectation over the
latent space of the same function applied to images obtained
by passing the latent vector through the fully trained generator
g∗. Since the dimension of the latent space is typically small
(NZ = 128 in this study), and the cost of forward propagation
through the generator network is low, this sampling process is
a computationally feasible task to perform.

2) Generator and critic architecture: Schematic diagrams for
generator g, critic d, and all of their sub-blocks are provided
in Figs. 9 through 12 in Appendix-A.

The generator g, shown in Fig. 9, is implemented using
a deep U-Net neural network architecture. Its input consists
of the image of the head, h, and the latent vector, z. It
includes a convolution layer, followed by three down-sampling
blocks, one central customized residual network (ResNet)
block, three up-sampling blocks, and two convolution layers
(see Appendix-A for a detailed description). As the input
is transmitted through the down-sampling blocks, its spatial
resolution reduces, while the number of features increases by a
factor of two. Exactly the opposite happens in the up-sampling
block. Further, information from a given level of spatial reso-
lution is directly transmitted from the down-sampling branch
to the up-sampling branch via skip connections. Stochasticity
is introduced in the network by utilizing the latent vector z to
perform conditional instance normalization [87] operations at
multiple spatial scales. A Sigmoid output function (applied
pixel-wise) ensures the predicted brain image is bounded
between 0 and 1.

For the critic network, shown in Fig. 10, the input is a
set of paired images of the brain and the head. The input is
passed through a convolution layer followed by three down-
sampling and ResNet blocks. Similar to the generator network,
down-sampling blocks reduce the spatial size of their input
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by a factor of two and double the number of channels.
Further, conditional instance normalization is replaced by layer
normalization. The down-sampling blocks are followed by two
dense layers, with the final output being a scalar.

C. Brain Extraction using cGAN Model
The brain extraction workflow is shown in Fig. 2. It begins

by loading a head image volume and performing the pre-
processing step discussed in III-D. The head MRI image is
then fed as individual axial slices, h, to the trained generator
neural network g∗ to perform the sampling process. This
involves generating n latent vectors, z, by sampling from a
Gaussian distribution. These vectors and the head image are
then passed through the generator g∗ which generates n likely
brain samples, bg1...n, for the given head slice image. These
brain images are used to compute a single pixel-wise mean
image, b̄,

b̄ =

∑n
i=1 g

∗(z(i),h)

n
, z(i) ∼ PZ , (6)

That is, the value of any pixel of the single computed brain
image b̄ is the average of intensities of the same pixel in n
sampled brain images. Thereafter, the 3D brain volume image,
denoted by B̄, is constructed by stacking these individual
slices for the whole head.

Similarly, an image of the pixel-wise standard deviation, b′,
is calculated by,

b′ =

√∑n
i=1 (g

∗(z(k),h)− b̄)2

n
, z(i) ∼ PZ . (7)

In the equation above, the power of 2 and square root are
interpreted as pixel-wise calculations in the images. The
standard deviation image slices are also stacked to yield a
volumetric image of pixel-wise standard deviation, denoted
by B′.

D. Pre-processing
The 3D images are loaded and reoriented to axial direction.

Then they are minimally pre-processed by eliminating hyper
intense noise voxels. We calculate a clipping value of the upper
99.99% percentile of the values within each 3D image and set
the intensity of voxels with greater values to the clipping value.
We also perform uniform min-max intensity normalization
for 2D axial slices and resize them to N1 × N2. No spatial
normalization, or non-linear intensity modification, such as
magnetic field bias correction, is applied to the images.

E. Post-processing
The final step in this workflow involves applying a thresh-

olding filter to the output mean image B̄. The result is a three-
dimensional binary image, or the mask, and is denoted by M .
In the mask, the brain voxels are denoted by 1, and the back-
ground is denoted by 0. We use a local thresholding scheme
(see threshold local in [88]), where a value is adaptively
calculated for each voxel based on the mean value of the
surrounding pixels. Voxels with intensity greater than the

calculated threshold are set to one, and others are set to zero.
Additionally, in the mask generated by the cGAN, we observe
some small scattered collections of incorrectly labeled voxels.
These occur as false positives outside the brain, typically in the
lower and upper slices, and near the intersection of the cere-
brum and the cerebellum, and rarely as false negatives within
the ventricles. To address this issue, we apply two morpholog-
ical filters to M that remove islands and cavities smaller than
a specified minimal volume (see remove small objects
and remove small holes operations in [89]). The mask
obtained after these filters is not very sensitive to the value
of minimal volume parameter as the size of the islands and
cavities are much smaller than the size of the brain. In the
results section, we report metrics for the mask M after
applying these post-processing filters. Finally, the mask image
M is transformed back to the original orientation and size of
the input head image. The final extracted brain B̂ is the result
of voxel-wise multiplication of this mask and the input head
image.

F. Evaluation metrics

The dice similarity coefficient (DSC), positive predictive
value (PPV ), sensitivity (Se), and the ratio of predicted to
target brain volume (V R) are used to evaluate the performance
of the brain extraction. These quantities are defined as,

DSC =
2 |M ∩ T |
|M |+ |T |

, (8)

PPV =
|M ∩ T |
|M |

, (9)

Se =
|M ∩ T |

|T |
, (10)

V R =
|M |
|T |

. (11)

In the equations above, M is the predicted, and T is the
ground truth, binary volume mask. They each represent a set
of voxels in three-dimensional space that attain a value of 1
for brain and 0 otherwise. The operator | · | denotes the sum of
the absolute values of image voxel intensities and ∩ denotes
the intersection of two binary images, i.e., a binary image that
attains one only for those voxels that have a value of one in
both images.

The DSC metric measures the similarity between two
binary images and ranges from zero to one, where a value of
one indicates a perfect match (M = T ⇔ DSC(M ,T ) = 1).
This is why we have selected DSC as the primary similarity
metric to evaluate the performance of brain extraction. The
metrics PPV and Se also range from zero to one, with one
being the most desired value. However, a value of one does not
necessarily indicate a perfect match. For example, a mask M
that has a single voxel set correctly to one and all others set to
zero will yield a PPV of one. Similarly, a mask M that has
all voxels set to one will yield a Se of one. Neither of these
masks would likely be a particularly favorable approximation
of the true mask T . Volume ratio (V R) can vary from zero
to infinity, with one being the optimal value. We note that
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the entire brain is considered in the calculation of the metrics,
and no part, like the ventricles, for example, is excluded.

G. Datasets

For training and evaluation of the proposed model, we
use four publicly available datasets separately, and then an
extended set that combines them all.

• The Neurofeedback Skull-stripped (NFBS) dataset con-
sists of 125 anonymized (defaced) 3D T1-weighted MR
images of 21 to 45 year old subjects, with a variety of
clinical and subclinical psychiatric symptoms [90]. The
dataset contains paired images of the head and the brain,
where brain extraction is performed using the BEaST
method [56] and then corrected manually. Out of 125
images, 70, 5, and 50 are used for training, validation,
and testing the model, respectively.

• The Calgary-Campinas-359 (CC-359) dataset contains
359 3D T1-weighted images in six bins: three ven-
dors (GE, Philips, and Siemens) at two magnetic field
strengths (1.5T and 3T). Each bin has 60 subjects (ex-
cept Philips 1.5T with 59). CC-359 also contains paired
images of head and brain, where the brain images are
the output of a separately trained supervised model to
provide a consensus from a number of brain extraction
tools [91]. Out of 359 images, 132 (22 from each bin)
are used for testing, 18 (3 per bin) for validation, and the
remainder for training.

• The LONI Probabilistic Brain Atlas (LPBA) [92] dataset
provides 40 native space 3D T1 MRI and their paired
brain images, from which 26 are used for training, 2 for
validation, and 12 for testing.

• The Internet Brain Segmentation Repository (IBSR v2)
[93] contains 18 pair head and brain images. We use a
split of 10, 1, and 7 for training, validation and testing.

• Finally, we construct a fifth dataset by combining the
NFBS, CC-359, LPBA, and IBSR datasets. This dataset
is labeled as extended (EXT) in this paper. The same
subjects for training, validation, and testing are used for
this dataset, where an aggregate of approximately 29,050
pairs of head-brain slices (19,200, 6,400, 2,600, and 850
from CC-359, NFBS, LPBA, and IBSR) are used for
training. The main output model of this work uses this
dataset for training (see Section IV).

In addition, we use an independent internal dataset to
evaluate whether the quantification of uncertainty provided
by the probabilistic models can be used as a measure to
evaluate their performance and to determine when manual
quality control (QC) is required (see Section IV-C). The
dataset contains 249 MRI images of multiple sclerosis (MS)
patients.

H. Comparison

We compare the performance of the proposed cGAN method
against six other methods. These include two versions of
BET [55], which is a commonly used non-DL based tool.
The first version is obtained by using the default parameter

values [94], and the second is obtained by performing a grid
search to select the “optimal” parameters, and is referred to as
BET-optimal (BET-O). We also compare the proposed cGAN
method against the state-of-the-art DL-based methods. To that
end, we conducted a literature search to identify some of
the most accurate algorithms. Out of these, we decided to
use two models, CompNet [63], and HD-BET [62], for the
comparison since they yielded the most accurate results. We
re-trained the CompNet model using the same data used to
train our model. For HD-BET, we use the pre-trained model
available for this method. Additionally, we include a direct
inference model based on supervised error minimization. This
model is based on a DCNN architecture that mimics the
architecture of the generator network in the cGAN model.
Finally, as discussed in Section II-A, diffusion models have
received significant attention in the field of medical imaging
due to their promising performance. Moreover, these models
can produce an ensemble of outputs, leading to the ability to
generate uncertainty maps similar to our model. Hence, we
compare the performance of our model against a diffusion
model-based implementation as a benchmark. To that end,
we re-train the model based on the work presented in [29],
which is a conditional version of the denoising diffusion
probabilistic model (DDPM), originally inspired from [95].
The implementation of the DCNN and DDPM methods is
discussed in detail in Appendix-C.

IV. RESULTS AND DISCUSSION

The results of the proposed algorithm are presented in this
section. In Section IV-A, we provide a qualitative discussion
about the typical outputs of our method. A quantitative anal-
ysis is presented in Section IV-B to demonstrate the accuracy
and robustness of our method in comparison to other methods.
Finally, we discuss the estimates for uncertainty and their
advantages in Section IV-C. Where appropriate, technical and
neuro-imaging implications of the results are discussed.

A. Brain Extraction Results

We demonstrate the performance of the proposed algorithm
by presenting samples of input and output images. Fig. 3
shows the brain extraction results of multiple slices incremen-
tally covering a whole brain of a single subject. In the figure,
we start from the top of the head and then progressively move
down. From left to right, the first column is the input head
image, h, the second column is the ground truth brain image,
b, the third column is the mean image, b̄ (pixel-wise average
of samples generated by generator g∗ before thresholding and
filtering), the fourth column is the output brain or the mean
image after post-processing b̂, and the fifth column is the pixel-
wise standard deviation image, b′. These images are generated
using a subject from CC359 dataset.

In all slices, we observe that the output mean image is
remarkably close to the target image. Further, the model is
robust enough to accurately extract relatively atypical brain
parts, such as slices with varying thickness of skull or
meninges (especially the topmost part of the brain shown in
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Fig. 3: Brain extraction results for multiple slices of a
subject. Left to right: input head image, target brain image,
predicted mean image, mean image after post-processing, and
the standard deviation image.

the first row), cerebellum (lower part of the sixth row), multi-
domain slices where the cerebellum and cerebrum appear in
discontinuous locations (inferior temporal gyri shown in the
middle of the sixth row), and the brain stem (shown in the
last row). In the fifth column, we observe that the standard
deviation, and therefore uncertainty, is peaked mainly along
a thin 2-3 pixel region interface between the brain and the
remainder of the image. Uncertainty quantification is discussed
in Section IV-C in more detail.

B. Comparison and Quantitative Analysis
We compare the performance of our method and the

algorithms discussed in Section III-H using the NFBS, CC359,
LPBA, IBSR, and EXT datasets, based on the metrics pre-
sented in Section III-F. We train the cGAN, DCNN, CompNet,
and DDPM models on EXT dataset (aggregate of all training
subjects from the other datasets) and evaluate them on test
subjects of each of the datasets (3D MR images that were kept
aside for testing). We note that HD-BET method is evaluated
based on the available model that is pre-trained on EORTC-
26101 dataset [62]. Also, no training is involved for BET and
BET-O since they are non-DL methods.

As discussed in Section III, the cGAN model performs
brain extraction on axial slices and then stacks images to
provide a 3D volume. Then a post-processing step produces
the 3D binary mask image M . We evaluate the accuracy of

TABLE I: Mean and standard deviation (in parenthesis) of
evaluation metrics for different methods evaluated on five
datasets. The best method for each metric within each dataset
is shown in bold font.

NFBS
DSC PPV Se V R

BET 77.48 (7.43) 73.54 (6.02) 73.55 (12.80) 0.886 (0.179)
DDPM 91.31 (15.98) 96.26 (0.68) 89.95 (20.14) 0.934 (0.208)
BET-O 91.81 (2.17) 87.58 (4.20) 96.60 (0.72) 1.106 (0.059)
CompNet 95.28 (3.80) 92.61 (6.60) 98.39 (0.57) 1.069 (0.094)
DCNN 96.49 (0.15) 97.43 (0.22) 95.58 (0.27) 0.981 (0.004)
HD-BET 97.23 (0.28) 95.35 (0.66) 99.19 (0.27) 1.040 (0.009)
cGAN 97.84 (0.43) 96.93 (1.17) 98.77 (0.58) 1.019 (0.017)

CC359
DSC PPV Se V R

BET 87.27 (7.82) 80.04 (11.47) 97.11 (2.70) 1.246 (0.235)
DDPM 95.97 (2.79) 96.35 (0.86) 95.75 (4.92) 0.994 (0.052)
BET-O 96.58 (0.61) 95.18 (1.36) 98.05 (1.45) 1.310 (0.027)
CompNet 96.52 (4.28) 95.56 (7.02) 97.84 (0.63) 1.033 (0.123)
DCNN 96.54 (1.26) 98.68 (1.03) 94.55 (2.50) 0.958 (0.031)
HD-BET 97.11 (0.50) 94.72 (1.01) 99.64 (0.15) 1.052 (0.012)
cGAN 97.19 (0.39) 96.43 (0.94) 97.99 (0.65) 1.016 (0.015)

LPBA
DSC PPV Se V R

BET 94.90 (2.71) 91.85 (4.91) 98.32 (0.52) 1.074 (0.067)
DDPM 97.21 (0.26) 96.83 (0.64) 97.59 (0.47) 1.008 (0.010)
BET-O 97.24 (0.29) 96.47 (0.73) 98.03 (0.50) 1.020 (0.012)
CompNet 97.57 (0.22) 97.27 (0.53) 97.87 (0.50) 1.006 (0.010)
DCNN 96.22 (0.50) 93.05 (0.99) 99.62 (0.93) 1.070 (0.012)
HD-BET 97.51 (0.01) 98.21 (0.47) 98.61 (1.06) 1.014 (0.011)
cGAN 97.57 (0.24) 98.31 (0.52) 96.84 (0.56) 98.51 (0.010)

IBSR
DSC PPV Se V R

BET 87.07 (5.02) 97.01 (2.25) 79.50 (8.38) 0.821 (0.098)
DDPM 86.33 (9.27) 81.86 (13.29) 92.27 (5.56) 1.153 (0.172)
BET-O 87.20 (5.19) 98.43 (0.48) 78.69 (8.08) 0.800 (0.085)
CompNet 81.98 (8.09) 75.61 (13.80) 91.78 (6.72) 1.26 (0.276)
DCNN 96.29 (0.70) 98.23 (0.56) 94.44 (1.34) 0.961 (0.016)
HD-BET 97.37 (1.02) 96.80 (2.74) 98.02 (1.09) 1.014 (0.040)
cGAN 97.43 (0.50) 97.42 (1.10) 97.47 (1.48) 1.001 (0.025)

EXT (Extended)
DSC PPV Se V R

BET 85.47 (8.89) 82.42 (10.67) 90.86 (12.41) 1.130 (0.266)
DDPM 94.58 (8.74) 95.80 (3.93) 94.37 (10.98) 0.987 (0.123)
BET-O 95.14 (2.97) 93.54 (4.17) 97.03 (4.00) 1.040 (0.069)
CompNet 95.58 (0.93) 94.00 (1.92) 97.71 (0.48) 1.052 (0.027)
DCNN 96.50 (3.40) 98.01 (1.62) 95.94 (2.60) 1.035 (0.024)
HD-BET 97.17 (0.49) 95.05 (1.21) 99.38 (0.54) 1.046 (0.018)
cGAN 97.38 (0.48) 96.70 (1.10) 98.10 (0.83) 1.015 (0.018)
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M , and the mask created by other methods, against the target
mask image of the test subjects, T . The quantitative metrics
DSC, PPV , Se, and V R for the algorithms are compared in
Table I, where we report the mean and the standard deviation
(in parenthesis) of the metrics for each method. These statistics
are obtained by applying each method to test subjects from the
five datasets.

We also show the distribution of the results as boxplots in
Fig. 4 for each metric, method, and dataset. The horizontal
line in the middle of a boxplot indicates the average value of
the metric over all test subjects, and the whiskers denote the
range of the values excluding outliers. The color boxes show
the interquartile range (IQR). The outliers, i.e., values that are
more than 1.5 IQR below 25th percentile and 1.5 IQR above
75th percentile, are shown as cross markers. Each subplot in
Fig. 4 reports results for a metric, and within each subplot,
results are first arranged as per the datasets and then as per
the method used. Results for EXT dataset are aggregates of
the other datasets and represent the overall performance of the
methods on all test subjects.

We regard DSC as the primary metric because, unlike
other metrics, it yields a value of one only in the case of
a perfect match between M and T . We also consider EXT
as the main dataset for image segmentation evaluation as it
contains test subjects from all other datasets, making it the
largest and most heterogeneous dataset. By observing the
mean DSC values for all methods on the EXT dataset, we
conclude that cGAN is the most accurate method, followed
by HD-BET, DCNN, CompNet, BET-O, and then DDPM
and BET. An examination of the size of the whiskers in the
boxplots, or the variance reported in the table, reveals that
the cGAN method has the smallest inter-subject variation,
demonstrating its robustness. This improved performance may
be attributed to the adversarial learning component in the
cGAN-based methods through which they learn the underlying
data distribution for better generalization. Moreover, we note
that HD-BET performs slightly better than DCNN (around
0.7%). This may be attributed to the fact that the HD-BET
model benefits from being trained on a significantly larger
dataset of approximately 1,600 subjects (∼2:1 ratio of training
to testing from 2,401 T1-w images [62]) compared to 322
training subjects in the EXT dataset.

The cGAN method is also the most accurate in achieving
values of volume ratio (V R) that are very close to unity with
very small spread. This is particularly useful when image
segmentation is followed by the estimation of the brain volume
in tasks like brain atrophy analysis. The DCNN method
produces the best PPV values, outperforming the cGAN,
which is second best by 1.3%. HD-BET performs marginally
better than cGAN in Se (1.2%). This can be explained by
recognizing that HD-BET uses a larger smoothing filter with
a more inclusive strategy, leading to relatively larger brains.
Consequently, the generated mask M has a higher probability
of including the target T , leading M ∩ T to be closer to T ,
which in turn pushes Se towards unity (see Section III-F for
definitions). However, this strategy results in an increase in the
predicted volume V R error in the HD-BET method by 4.6%.

We further compare the performance of the cGAN method
when trained on different datasets in order to investigate the
impact of dataset size on results. The results are shown in
Table II, where for each dataset (NFBS, CC359, LPBA, and
IBSR) accuracy metrics are presented for the model trained on
the EXT dataset (labeled cGAN) and for the model trained on
each dataset (labeled cGAN-dataset-name) using test subjects
from that dataset. Based on these results, we conclude that
when the dataset is sufficiently large (NFBS and CC359) the
algorithm trained on that dataset can successfully generalize
to unseen intra-dataset test subjects. Therefore, it performs
slightly better than the model trained on the extended dataset
(around 0.2% for NFBS and 0.8% for CC359). Conversely,
when the dataset is small (LPBA and IBSR with 26 and 10
training images, respectively), the algorithm trained on the
extended dataset generalizes better and its accuracy is higher
(around 0.8% for LPBA, and 0.4% for IBSR).

TABLE II: Statistics of evaluation metrics, mean and standard
deviation in parenthesis, for the cGAN model trained on EXT
dataset (cGAN), as the combination of training subjects, in
contrast to cGAN models trained on each of the four individual
datasets (cGAN-dataset-name). Evaluations are done on intra-
dataset test subjects. The best model for each metric within
each dataset is shown in bold font.

NFBS
DSC PPV Se V R

cGAN-NFBS 98.06 (0.75) 97.80 (1.45) 98.34 (0.50) 1.006 (0.018)
cGAN 97.84 (0.43) 96.93 (1.17) 98.77 (0.58) 1.019 (0.017)

CC359
DSC PPV Se V R

cGAN-CC359 98.03 (0.48) 98.64 (1.03) 97.43 (0.87) 0.988 (0.017)
cGAN 97.19 (0.39) 96.43 (0.94) 97.99 (0.65) 1.016 (0.015)

LPBA
DSC PPV Se V R

cGAN-LPBA 96.80 (0.32) 96.41 (0.90) 97.19 (0.47) 1.008 (0.014)
cGAN 97.57 (0.24) 98.31 (0.52) 96.84 (0.56) 98.51 (0.010)

IBSR
DSC PPV Se V R

cGAN-IBSR 97.02 (0.59) 97.57 (1.15) 96.50 (1.44) 0.989 (0.024)
cGAN 97.43 (0.50) 97.42 (1.10) 97.47 (1.48) 1.001 (0.025)

Additionally, to provide intuition about how the prediction
from different methods can differ, the masks generated by
these methods are shown in Fig. 5 in the sagittal view. The
input head and the target brain images are shown in the
first column. In columns 2-8, the results generated by each
method are displayed, and in column 9 the ground truth is
displayed. The first row contains the brain masks where green
pixels indicate a true negative prediction, gray pixels indicate a
true positive prediction, orange pixels indicate a false positive
prediction and pink pixels indicate a false negative prediction.
The second row shows the boundary of the predicted brain
mask overlaid on the head image so as to compare it with
the corresponding brain tissue in the input image. The last
column is the target image and therefore comprises only gray
and green pixels. The sample 3D image is selected from the
CC359 dataset.

Based on our observations, there is a significant difference
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Fig. 4: Boxplots of evaluation metrics (DSC, PPV , SE, and V R) for NFBS, CC359, LPBA, IBSR, and EXT datasets.
Within each dataset, boxplots are shown for BET, DDPM, BET robust (BET-O), CompNet, DCNN, HD-BET, and our method
(cGAN) by distinct colors shown in the legend.

between the performance of our method and the BET results.
The BET method with default parameters (second column)
generates large regions of false-negative and false-positive
predictions. When it is used with optimal parameters (third
column), the performance is improved. However, large false
negatives in superior and frontal regions still remain. These
findings correlate with the results observed in Table I. It
is noteworthy that the performance of DDPM, BET-O, and
CompNet are noticeably dataset-dependent, e.g., DSC of
DDPM’s is 97.21% for LPBA and 86.33% for IBSR, BET-
O’s DSC is 97.57% for LPBA and 87.20% for IBSR, and

CompNet’s DSC is 97.24% for LPBA and 81.98% for IBSR.
The DCNN performance is generally acceptable. However,
in atypical input slices, its performance drops. These include
slices containing varying skull and meninges thicknesses or
disconnected brain segments. The performance of our model
(cGAN) and HD-BET are generally high, stable, and com-
parable, with slightly different characteristics. The HD-BET
mask is more inclusive in some areas, such as regions anterior
to the midbrain and inferior to the hypothalamus (pituitary
gland), and less inclusive in the brain stem (caudal medulla).
The cGAN model produces results that better follow the
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Fig. 5: From left, the first column is a sample input image and its brain. From the second column, the generated masks and
the masks’ boundaries are shown for the indicated methods. The last column is the ground truth. In the mask images, green
indicates true negative, gray true positive, orange false positive, and pink false negative predictions.

geometry of the brain’s gyri (ridges) and sulci (grooves) while
staying accurate by not including irrelevant areas. It should
also be noted that the small false positive areas indicated
with orange pixels in the cGAN mask (eighth column in
Fig. 5) are not necessarily detrimental for the subsequent
tasks. This is because most neuroimaging tasks can handle
brain images with smoothed sulci. This is not true for false
negatives since any “lost brain tissue” is not recoverable in
the subsequent steps. Further, we observe that DDPM results
in occasional severe brain extraction failures. In other words,
the DDPM performance is generally high in the majority of
cases and as low as 29.66% in a few cases. Consequently,
the mean performance of DDPM stands lower than other DL-
based methods (94.58%). Also, based on our experiments, the
inaccuracy in DDPM outputs is often in the form of false
negatives, meaning that parts of the brain are excluded from
the final prediction (unrecoverable).

C. Role of Uncertainty Quantification

In this section, we discuss how estimates of uncertainty, as
given by the pixel-wise standard deviation of extracted brain
samples generated by the model, can be utilized. In the first
two columns (from the left) of Fig. 6, we have plotted the input
head and the target brain images, and then two sets of columns
generated by the DDPM and cGAN models. The fifth, sixth,
and seventh columns of this figure illustrate three samples of
the brain generated by the cGAN model (bg1...n). The pixel-
wise mean of all of the generated samples, the pixel-wise mean
after post-processing, and the pixel-wise standard deviation
images are shown in the eighth, ninth, and tenth columns,
respectively. The third and fourth columns show the pixel-
wise mean and standard deviation images of the ensemble of
images generated by the DDPM model. The DDPM and cGAN
models use an equal number of samples (20) to generate the
ensemble.

In the first row, a typical representative head slice (Original
1) is used. We observe that the standard deviation is higher at a
narrow interface between the brain and the rest of the tissue in
both models. Accordingly, the three shown samples generated
by the cGAN generator are almost identical. In other words,
the model is certain about its prediction. In the second row, we
introduce a typical aliasing artifact in the original head image

by altering the k-space representation of the head MRI image
(setting every fifth column of the real component in phase
encoding direction to zero). We observe that the mean images
are robust to this perturbation. The standard deviation image
of cGAN now captures a higher level of uncertainty, especially
in a thin region on the left side of the image. Conversely, this
artifact has a minimal impact on the standard deviation image
generated by the DDPM model. In the third row, the artifact is
more severe as every third column in the k-space is obscured.
The standard deviation in cGAN responds to this by indicating
higher levels of uncertainty, especially on the left side of
the image. When comparing the mean and the target images
in this region, we recognize that this is precisely where the
algorithm has incorrectly labeled some pixels as brain (false
positives). This example demonstrates how regions of high
pixel-wise standard deviation can alert the end-user to where
the prediction may be incorrect or ambiguous. We also note
that this error is successfully eliminated in the post-processing
step. In the DDPM output, the standard deviation increases
slightly in some areas but generally remains minimal. The
fourth row shows the original input image severely distorted
by a blurring filter. As a result, the generated samples of
cGAN are significantly different, and the standard deviation
peaks in several regions. This is an indication that the input
image is out of distribution (OOD) compared to the images
used to train the model. Typically, machine learning algorithms
are prone to producing erroneous outputs from OOD inputs
without any warning. In contrast, the method introduced in
this paper provides an estimate of uncertainty, which in turn
can be inferred as a measure of confidence in the prediction.
Again, the output of DDPM shows minimal increase in the
standard deviation, which is a cause for concern given that
this is an OOD sample. Row five presents an example of an
input image altered by adding a random Gaussian noise filter.
The noisy image values are clipped to preserve the range of
input data between zero and one. The cGAN model prediction
is robust to the added noise and produces a higher level of
uncertainty. In contrast, DDPM gives the impression of being
sensitive to added noise in this example, as its mean image
shows severe failure in the form of a large false negative area.
Accordingly, it produces a large standard deviation. However,
even then it fails to cover the entire area where its prediction is
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Fig. 6: From left to right, the input image, target brain, and the mean and standard deviation images generated by the DDPM
method (diffusion model) are shown. The remaining columns belong to the cGAN method, where three generated sample brain
images, the mean image, the mean image after post-processing, and standard deviation images are depicted. Each row shows
the results using different input images. The first row is a typical head slice (Original 1). In the second row aliasing artifact is
synthetically induced to the original 1 image. In the third row, the artifact is more severe. In the fourth row, the input image
is blurred. Row five shows the input image altered by adding noise. The sixth row has an improper cropping. In the last row
(Original 2) the geometry of the brain is relatively complex with visual similarities with other tissues. The main observation is
that in atypical input images, the samples generated by cGAN are more diverse and the standard deviation is higher, reflecting
the model’s uncertainty in prediction.

erroneous. In the sixth row, an image with improper cropping
(a common issue in clinical context) is shown where a part
of the brain is missing. As can be seen, the brain extraction
outputs of both methods are reasonably accurate. However, the
cGAN algorithm produces a peak in the standard deviation in
the affected area, while the DDPM appears to be insensitive to
this artifact. The last row (Original 2) in Fig. 6 is an MRI slice

intersecting the brain tangentially through the gyrus rectus and
orbital gyri (the part of the brain between eye globes and above
the nasal cavity). This area is visually similar to the optic
chiasm, a cross-shaped tissue that does not belong to the brain
and is found in a nearby location. Due to this ambiguity, it is
reasonable to expect that in some outputs, this region is treated
as part of the brain, and in others, it is not. The proposed
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Fig. 7: Plot of dice error (1−DSC) and aggregate standard
deviation measure for the test subjects with a correlation
coefficient of 0.788.

method reproduces this uncertainty and reports large standard
deviation values in this region. The standard deviation for the
DDPM also shows slight increase in this area.

In summary, the standard deviation reported by the cGAN
method may be interpreted as the uncertainty in its prediction
and can arise from a variety of factors, including out-of-
distribution inputs, artifacts, and input ambiguity. Its spatial
distribution can also be utilized to locate regions with potential
errors. When compared to the DDPM, the cGAN generates
more diverse images that are more effective in pointing to
uncertainties, covering the potential inaccuracies, and are
sensitive to a wider range of ambiguities. It is noteworthy
that a deterministic method can, at best, produce an accurate
segmentation output similar to the ninth column in Fig. 6.
However, this is not sufficient in some cases. For instance, in
the cropped image, even if the segmented brain is accurate, a
subsequent algorithm that measures the volume of the brain
tissue will yield inaccurate results as a significant portion of
the brain will be missing. In this scenario, the proposed method
warns the end-user by producing higher uncertainty values.

The standard deviation can also be used to provide a
consolidated estimate of the reliability of the model output
in extracting the brain from a whole head 3D MR image.
We demonstrate this by computing an aggregate value of the
standard deviation defined as the sum of the standard deviation
of voxels with a value greater than a hyper-parameter set to
be 0.05. We then normalize this value by dividing it by the
number of voxels in the brain mass and denote this value as û.
In Fig. 7, for each test subject of the training datasets, we plot
the dice error ē = 1−DSC and this aggregate value. We note
that these two measures are correlated, and thus, the aggregate
standard deviation value û can be used by an end-user as a
measure of confidence in the generated mask.

This measure is especially useful when the proposed
algorithm is used in clinical applications. In these instances,
the target brain image and, hence, the dice error are un-
known. However, the measure û is still calculable through
our algorithm. A small value of this measure will provide

the end user with higher confidence that the resulting brain
image is sufficiently accurate. On the other hand, larger values
can warn the end-user for the need for quality control (QC),
i.e., to investigate the brain extraction output manually. To
demonstrate this, we conducted brain extraction and calculated
the uncertainty measure û on an independent internal dataset
that is not seen by the model during the training (see Section
III-G for details).

The histogram of the calculated values for û of all sub-
jects is shown in blue in Fig. 8-a. We note that, for better
presentation, the values are min-max normalized, i.e., the
minimum (1.1991e−3), and maximum (1.2105e−2) values are
set to be zero and one respectively, and the rest of values
are linearly scaled In the next step, we employ a Gaussian
mixture (GM) model to categorize û values into two primary
classes, indicated by two Gaussian probability distributions,
using maximum likelihood estimation. Fig. 8-b demonstrates
the probability of the values belonging to the second class.
As can be seen, the values of û close to zero, i.e., those
with little uncertainty in their prediction, belong to the first
group of images indicated as Accept. As the uncertainty
increases, the probability of images belonging to the second
group increases. This corresponds to the group for which
quality control is required (denoted by QC). This yields the
decision boundary indicated by a dashed vertical line in Fig.
8 ( ûQC = 3.9845e−3). Subjects with uncertainty higher than
this value should be recommended for a manual QC check.

Fig. 8: a) Histogram of normalized values of variation
metric û and the fitted Gaussian mixture (GM) model. b) The
probability of each subject belonging to Accept and QC groups
based on the GM probabilities.
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To evaluate the effectiveness of the calculated decision
boundary, we conducted an exhaustive QC on the dataset.
Out of 249 MR images, 24 yielded û greater than ûQC .
Out of these, 13 demonstrated significant issues with brain
extraction. Of these, 11 instances were scanned with a wrong
sequence (are not standard MRI images) due to human error,
one had a hyperintense noise signal, manifested as a strip of
voxels with spiked values, and one had a minor inappropriate
cropping error. All these erroneous images were detected by
the algorithm. Among the 225 images that were included in
the Accept group, no significant issues were observed.

V. CONCLUSIONS

In this manuscript, we have developed, implemented, and
tested a novel algorithm for brain extraction that is based
on Deep Bayesian inference. It utilizes a conditional GAN
formulation, where the generator is in the form of a U-Net,
and the uncertainty is introduced by the latent variables at
multiple scales and for multiple features through conditional
instance normalization. The key features of this approach are:

1) Accuracy: The method described in this manuscript
yields accuracy metrics that are significantly better than
a widely-used brain extraction tool and compare favor-
ably with the best values achieved by the state-of-the-art
methods in the literature.

2) Uncertainty quantification: This brain extraction method
can generate estimates of uncertainty in its prediction.
We also demonstrate how these results can be used to
detect regions of likely error within an image and to
assess the overall performance of the algorithm.

3) Robustness: We aimed to maximize the heterogeneity
of our dataset to evaluate the robustness of our method
by combining four datasets. The datasets contain MRI
images (a) from healthy subjects and patients with
psychiatric symptoms, (b) with different methods of
defacing, and (c) obtained from different manufactur-
ers, sequences, and varying contrast and magnetic field
strength. We also evaluated the application of uncer-
tainty quantification on a clinical dataset.

4) Speed: The fully trained model can be deployed on a
reasonable desktop (with Nvidia GeForce RTX 2080
GPU) and can generate 40 samples in less than a
minute (on average, 46 seconds over MR images of
size 256× 192× 170). The BET-O process takes about
nine minutes on the same computer. The diffusion model
(DDPM) takes about 16 seconds to generate one sample
per slice. This amounts to about 20 hours for 20 samples
for a 3D image, which is substantially slower that the
cGAN method.

However, despite the above-mentioned features, the cGAN
method requires more training time than other methods that
utilize U-Nets (approximately 150 hours compared to 45 hours
for DCNN and 84 hours for DDPM, using the same hardware).
This is because the adversarial loss function (including the
gradient penalty term) and having two neural networks make it
more expensive and memory-demanding to train. Also, during
inference, the model has to generate multiple samples, which

needs longer computation time compared to a deterministic
model with the same neural network size. It should be noted
that the model only needs to be trained once, so this extra
cost of training will be amortized over the multiple runs of
the network.

We would also like to note that there are certain limitations
of the current study that could be addressed in future work and
extensions. These include: (a) When comparing with other DL-
based brain extraction methods, we did our best to re-train
the previous models with the data used to train our model.
However, in one instance (HD-BET), the source code was
unavailable, and we used the pre-trained model. Also, in an-
other case [61], the input pipeline provided by the authors had
to be modified significantly to accommodate heterogeneous
data. These difficulties point to the importance of setting up a
public database and challenges for brain extraction that could
be used by researchers to test their methods against the state-
of-the-art in a systematic way. Similar efforts in other areas
of imaging are already quite mature; (b) As mentioned earlier,
brain extraction is usually the first step in a neurological
pipeline that includes downstream tasks like computing the
volume of grey and white matter and segmenting brain lesions.
It will be of interest to see how the performance of the methods
considered in this study translates to performance in these
downstream tasks.

APPENDIX

A: ARCHITECTURE OF NEURAL NETWORKS

.
Fig. 9: The U-net based architecture of the generator g in
the proposed cGAN. It consists of three convolution layers,
three levels of down-sampling and up-sampling, and skip
connections. There is a ResNet block that accepts the latent
variable z inside each down-sampling and up-sampling block
and at the middle of the U-net. The tensor size of the data is
also shown. Please refer to Section III-B.2 and Appendix for
more details.

The architecture of the generator and critic neural networks
discussed in III-B.2 are illustrated in Figures 9 and 10. As
shown, they comprise various network blocks. We describe
the key components in the following.

a) Down-sampling block: This block is used to reduce the
spatial resolution while increasing the number of channels. As
depicted in Fig. 11, each down-sampling block consists of a
convolution layer with output channels twice the number of the
channels of the input, a 2D average pooling layer that reduces
the spatial dimensions by a factor of two, and a ResNet block.
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Fig. 10: The critic d neural network architecture, consisting
of a convolutional layer, three layers of down-sampling, and
two dense layers. d receives a pair of always-real head and
a brain image. It produces larger values for real brains and
smaller values for generated brains.

Fig. 11: The down-sampling block.

b) Up-sampling block: Each up-sampling block, shown in
Fig. 12, receives the output of the previous block and an
output of a down-sampling block of the same spatial size
through a skip connection. These tensors are concatenated in
the channel dimension. The up-sampling block then performs
a convolution that halves the channel size, a 2D up-sampling
that increases the spatial dimension by a factor of two, and
finally passes the signal through a ResNet block.

Fig. 12: the up-sampling block.

c) Conditional instance normalization (CIN): The CIN block,
depicted in Fig. 13, is used to inject the latent variable z into
different levels of the generator’s U-Net architecture. It accepts
as input z and an intermediate tensor x(i) of size h× w × c.
The CIN block first performs a channel-wise normalization
(Norm) of x(i),

Norm(x(i))j =

x
(i)
j − µ

(
x
(i)
j

)
σ
(
x
(i)
j

)
 , j = 1 · · · c (12)

where µ(.) and σ(.) compute the mean and standard deviation
along the spatial directions for a given channel j. Next,
the latent vector z of size 1 × 1 × NZ is passed through

two separate 2D convolution layers, α(z) and β(z), each
transforming z to a tensor of shape 1×1× c. The final output
of the CIN block is given by the following re-normalization

CIN(x(i), z)j = α(z)j ⊗Norm(x(i))j ⊕ β(z)j , (13)

where ⊗ and ⊕ represent element-wise multiplication and
summation in the channel direction for j = 1 · · · c, respec-
tively. In other words, CIN redefines the channel-wise mean
and standard deviation of an intermediate tensor to new values
depending (non-linearly) on the latent signal. Note that an
advantage of injecting the latent information in this manner
is that the dimension NZ can be chosen independently of the
spatial resolution of the MR image.

Fig. 13: The conditional instance normalization (CIN) block.

d) ResNet block: Motivated by the network architecture in
[11], we implemented a customized ResNet block depicted in
Fig. 14. When appearing in the generator, it takes as input z
and an intermediate tensor x(i). The inputs pass through two
parallel passways, whose results are summed together to give
an output tensor that retains the same shape as x(i). Note that
when the ResNet block is used in the critic and the U-net in
DCNN, it takes as input only x(i) with CIN replaced by layer
normalization.

Fig. 14: The customized residual network (ResNet) block.

B: IMPLEMENTATION NOTES

We used the TensorFlow [96] library for training and
testing our models. All training experiments are done with
a batch size of 16 using NVIDIA Geforce RTX 2080 with
8 GB of GPU memory and 64 GB of computer RAM. An
early stopping scheme is utilized based on dice similarity
coefficient (DSC) calculation on the validation data after
each epoch. Our best model was obtained at epoch 883 after
about 150 hours of computing time. Furthermore, we used an
iterative algorithm for training where the generator weights
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were updated after every four updates of the critic weights.
We used Adam’s [97] amsgrad variant [98] as the optimizer
for the training of our model. We also set β1 = 0.2 and
β2 = 0.7 and an initial learning rate of 1.0e− 4 as optimizer
hyper-parameters. Additional information and instructions are
available at: https://github.com/bmri/bmri

C: COMPARING METHODS’ DETAILS

C-I. Deep convolutional neural network (DCNN) model
We implemented a deep convolutional neural network

(DCNN) logistic regression model. One can deem a DCNN
model as a function approximator, f : ΩH 7−→ ΩB , that
provides the probability that each pixel in the head image
belongs to the brain. This is done by training a CNN-based
model that is trained in a supervised fashion. That is, unlike
the adversarial loss in the cGAN, a binary cross entropy loss
function is used to directly measure the difference between the
target binary mask brain t and the model output for the input
head image, f(h), in a pixel-wise binary classification setup:

L(t,f(h)) = − 1

N1 ×N2

N1×N2∑
i=1

[ti log(f(h)i)

+ (1− ti) log(1− f(h)i)], (14)

where ti denotes the pixels of the ground truth binary mask,
and f(h)i are pixels of the model output. This loss function
penalizes the difference between the corresponding pixels in
the ground truth (what should be predicted) and the model’s
output (what is predicted). The optimized DCNN model is
given by

f∗ = argmin
f

L(t,f(h)). (15)

That is the model that produces images that are closer to
the target mask based on the binary cross entropy measure.
Finally, a thresholding filter is applied to the output image to
generate the output mask. One should note that the ground
truth brain images used to train the cGAN are not converted
to binary mask images. The neural network architecture of the
DCNN closely resembles the U-net based generator, g, from
the cGAN. However, it does not include a latent variable, and
there is no conditional instance normalization (CIN) in the
ResNet blocks. Further, most of the hyperparameters, such as
batch size and learning rate, were kept the same as the cGAN
model.

C-II. Denoising diffusion probabilistic model (DDPM)
During the training phase of the unconditional version

of diffusion models, a datapoint is drawn from the given
distribution as x0 ∼ q(x0). The forward noising process is
then defined as producing latent images xt, t = 1 . . . T through
T steps of adding Gaussian noise to the image of the previous
step [27] as follows:

q (xt|xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
(16)

where I denotes the identity matrix and βt ∈ (0, 1), t =
1 . . . T represent the variances of the added noise in different

steps, such that β0 < β1 < · · · < βt. Additionally, it is
demonstrated in [95] that by introducing αt := 1 − βt and
αt :=

∏t
s=1 αs, we can obtain the latent image through the

direct application of noise to the initial (clear) image x0 as:

q (xt|x0) := N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
(17)

This further results in the definition of a function to provide
xt as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I). (18)

The noisy images are used to learn the backward denoising
process as follows:

pθ (xt−1|xt) ∼ N (xt − 1;µθ (xt, t) ,Σθ (xt, t)) , (19)

which in turn is used to define the following denoising
formulation:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
+ σtz. (20)

ϵθ(xt, t) is the output of a U-net, parameterized by θ that is
trained based on xt generated from Equation (18) for varying
t ∈ [1 . . . T ]. z ∼ N (0, I) is a random noise, and σt is the
standard variation of the noise that is learned by the model in
this version (See Equations (15) and (16) of Reference [95]
for more details). In practice, Equation (20) receives an initial
random noise and iteratively reduces the noise to generate a
new point sample from the dataset q.

The implemented benchmark used in this work concerns
the conditional version of the presented DDPM. Accordingly,
the brain mask image m undergoes the forward noising and
backward denoising process, while the head image h is used
as the condition in the form of an additionally concatenated
image channel. Accordingly, the noising step constitutes:

mh,t =
√
ᾱmh,0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (21)

and the denoising process takes place as follows:

mh,t−1 =
1

√
αt

(
mh,t −

1− αt√
1− ᾱt

ϵθ (mh,t, t)

)
+ σtz.

(22)
In this paper, we used the same data used for training the
cGAN model for the DDPM model. Also, we tried to keep
the default values of the implementation whenever possible.
Accordingly, T = 1000 diffusion steps with batch size 16
and learning rate 1e − 4 is used for training. 64 channels
were used for the first U-Net level with two res-block units.
As mentioned, σt is learned by the model, and the attention
model’s resolution is set to 16.
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